Estimation of genetic components for grain yield and quality traits of rice

S. K. Roy* and B. K. Senapati

AINP on Jute and Allied Fibres, Uttar Banga Krishi Viswavidyalaya, Cooch Behar-736165, West Bengal

ABSTRACT

The nature of gene interaction in the inheritance of sixteen yield and seven grain quality traits was studied deploying generation mean analysis following 6 parameter model for parents, F_{1P} , F_{2P} , BC_{1} and BC_{2} generations of three crosses of rice, during wet season. The additive gene effect was significant for all the characters except florets panicle⁻¹, grain length, cooked kernel breadth and cooked kernel L/B ratio in IET 6441 × Dudheswar, grain yield plant⁻¹ in IET 8002 × Basmati 385 and cooked kernel length in IET 8002 × Sambamahsuri, while dominance effect was significant for all the characters except days to 50% flowering, panicle length, florets panicle⁻¹ and kernel length in IET 6441 × Dudheswar, except for total tillers plant⁻¹, productive tillers plant⁻¹, panicle length, florets panicle⁻¹, filled grains panicle⁻¹, floret fertility, 1000 seed weight, grain yield plant⁻¹, harvest index and cooked kernel L/B ratio in the cross IET 8002 × Basmati 385 and except for panicle length, grain yield plant⁻¹, harvest index and cooked kernel L/B ratio in the cross IET 8002 × Basmati 385 and except for panicle length, panicle length, florets panicle⁻¹, filled grains panicle⁻¹, floret fertility, grain weight panicle⁻¹, grain yield plant⁻¹. Duplicate epistasis played an important role in the inheritance of all the yield and quality related traits except days to 50% flowering, panicle length, florets panicle⁻¹ and kernel length in IET 6441 × Dudheswar.

Key words: rice, generation means, epistasis, quality traits

Rice is the principal food crop of India and breeding for higher yield is of prime importance. In the Indian scenario, it is estimated that rice demand in 2010 will be 100 million tonnes and in 2025, the demand will be 140 million tonnes (Mishra, 2004). This projected demand can only be met by maintaining steady increase in production over the years. At the same time improvement in rice grain quality has become an important breeding objective as many countries have achieved rice self sufficiency (Juliano and Duff, 1991). The knowledge on the nature of gene action in the inheritance of yield and quality related traits would be useful to formulate a suitable breeding programme and develop better cultivars with higher yield and superior grain quality. Keeping this in view, the present study was initiated to investigate the gene effects controlling different quantitative traits relative to yield and grain quality, deploying appropriate model of generation means analysis. A number of studies have been carried out in the past to study the inheritance of quantitative traits in rice using the generation means analysis (Somrith et al., 1979 and Roy and Panwar, 1993).

MATERIALS AND METHODS

The experimental material consisted of five diverse rice genotypes namely IET 6441, IET 8002, Dudheswar, Basmati 385 and Sambamahsuri among which three crosses namely IET 6441 \times Dudheswar, IET 8002 \times Basmati 385 and IET $8002 \times Sambamahsuri$ were carried out. The female parents IET 6441 and IET 8002 were semidwarf high yielders whereas, the male parents Dudheswar and Basmati 385 were tall and superior grain quality genotypes and Sambamahsuri was a semidwarf high yielding genotype with fine grain quality. Six generations namely P_1 , P_2 , F_1 , F_2 , BC_1 and BC_2 of the three crosses were raised in a randomized block design with four replications during wet season 2004-05 at Bidhan Chandra Krishi Viswavidyalaya, Subcentre Chakdah, West Bengal. In each replication every entry was transplanted with a single seedling per hill in five rows of 1.8 m length with a spacing of 20 cm between and within the rows. The recommended agronomic practices were followed to obtain a good harvest. For P_1 , P_2 and F_1 observations were recorded on five randomly selected plants in each entry in each replication. For BC₁ and BC₂ observations were

recorded from 20 randomly selected plants whereas, for F_2 observations were recorded from 40 randomly selected plants in each entry in each replication for the characters plant height (cm), total tillers plant⁻¹, productive tillers plant⁻¹, grain yield (g) plant⁻¹ and harvest index (%), but for days to 50% flowering observations were recorded per plot. For panicle traits like panicle length (cm), panicle weight (g), florets panicle⁻¹, filled grains panicle⁻¹ and floret fertility, observations were recorded from 10 randomly selected panicles. Observations on grain characters like grain length (mm), grain breadth (mm) and grain L/B ratio were recorded from 10 randomly selected grains. The polished rice samples were analyzed after six months of ageing for the seven quality triats viz. kernel length (mm), kernel breadth (mm), kernel L/B ratio, cooked kernel length (mm), cooked kernel breadth (mm), cooked kernel L/B ratio and linear elongation ratio by recording observations from 10 randomly selected kernels in the laboratory following standard methods (Murthy and Govindaswamy, 1967, Juliano et al., 1965 and Little et al., 1958). The mean values were used for four scaling tests suggested by Mather (1949) and for calculation of the gene effects from the 6-parameter model suggested by Jinks and Jones (1958). The joint scaling test as proposed by Cavalli (1952) was also applied to test the adequacy of additive-dominance model because the joint scaling test combines, very effectively, several scaling tests into one and offers a more general and more informative approach.

RESULTS AND DISCUSSION

The analysis of variance of the six generations P_1 , P_2 , F_1 , F_2 , BC_1 and BC_2 revealed that the six generations differed significantly for all the 16 yield and seven grain quality traits in the three crosses except for florets/ panicle by the cross C_1 . As compared to IET 6441, Dudheswar was the better performer for most of the yield related traits except florets panicle⁻¹ and grain breadth whereas, IET 6441 outperformed Dudheswar for most of the grain quality traits except kernel length, kernel L/B ratio and cooked kernel breadth (Table 1). IET 8002 performed better than Basmati 385 in 10 out of 16 yield related traits viz. days to 50% flowering, panicle weight, florets panicle⁻¹, filled grains panicle⁻¹, floret fertility, grain breadth, grain weight panicle⁻¹, 1000 seed weight, grain yield plant⁻¹ and harvest index

whereas, Basmati 385 outperformed IET 8002 for most of the grain quality traits namely kernel length, kernel L/B ratio, cooked kernel length, cooked kernel L/B ratio and linear elongation ratio. The parent IET 8002 showed superior performance than Sambamahsuri in 12 out of 16 yield related traits except days to 50% flowering, total tillers/plant, productive tillers/plant and grain L/B ratio and in three out of seven quality traits namely kernel length, kernel breadth and cooked kernel breadth.

In case of productive tillers per plant and kernel L/B ratio in the cross combination C_1 and days to 50% flowering, total tillers plant⁻¹, productive tillers plant⁻¹, floret fertility, grain breadth, 1000 seed weight and kernel breadth in the cross C2 and floret fertility, grain length, grain breadth, 1000 seed weight and kernel length in the cross C_3 , the F_1 mean performance was midway between the parental values with inclination towards better parent. This indicated that additive gene effects may be more important for these traits (Table 1). The estimates of gene effects also revealed a similar picture. The low mean performance of F₂'s as compared to F_1 's was observed for plant height, panicle weight, grain breadth, grain weight panicle⁻¹, 1000 seed weight, grain yield plant⁻¹ and kernel breadth indicating inbreeding depression of rice as reported by Sharma et al. (1986) and Krishna Veni et al. (2005). The value of BC_2 was higher than BC_1 in respect of all the characters studied, except for days to 50% flowering, total tillers plant¹, productive tillers plant¹, grain breadth, grain weight panicle⁻¹, 1000 seed weight, kernel breadth and cooked kernel breadth in the cross C₁ and for days to 50% flowering, total tillers plant⁻¹, panicle weight, florets panicle⁻¹, filled grains panicle⁻¹, floret fertility, grain breadth, grain weight panicle⁻¹, grain yield plant⁻¹, harvest index, kernel breadth and cooked kernel breadth in the cross C₂ and for plant height, panicle length, panicle weight, florets panicle⁻¹, filled grains panicle⁻¹, grain length, grain breadth, grain weight panicle⁻¹, kernel length, kernel breadth, cooked kernel length, cooked kernel breadth, cooked kernel L/B ratio and linear elongation ratio in the cross IET 8002 x Sambamahsuri.

The results of the scaling tests as proposed by Mather (1949) revealed that the additive-dominance model was inadequate in respect of all the characters evaluated except days to 50% flowering and panicle length in the cross C_1 , productive tillers plant⁻¹, 1000 seed weight and harvest index in the cross C_2 and kernel

Table 1.	Mean	performance of	of different	generations	of three crosses	for grain	vield and o	ruality	v traits in 1	rice
				A					/	

Treatment	Plant height (cm)	Days to 50% flowering	Total tillers plant ⁻¹	Productive tillers plant ⁻¹	Panicle length (cm)	Panicle weight (g)	Florets panicle ⁻¹	Filled grains panicle ⁻¹	Floret fertility (%)	Grain length (mm)	Grain breadth (mm)	Grain L/B ratio
C ₁ (IET 6441 x Due	dheswar)										
P ₁ (IET 6441)	89.46	118.75	16.63	10.83	22.04	2.44	159.75	102.35	66.17	8.02	2.44	3.29
P_{2} (Dudheswar)	142.20	115.25	27.20	22.10	23.78	2.98	157.85	120.20	82.60	8.17	2.33	3.50
$F_{1}(P_{1} \times P_{2})$	145.72	113.50	27.44	21.66	25.46	3.40	190.75	169.30	88.80	8.31	2.31	3.60
F ₂	141.35	114.25	22.85	18.38	23.43	2.30	153.90	135.13	79.81	8.06	1.98	4.08
$BC_1(F_1 \times P_1)$	114.00	115.25	23.35	16.56	23.42	3.40	155.70	142.36	88.26	8.04	2.68	2.99
$BC_2(F_1 \times P_2)$	148.13	115.25	17.06	12.35	23.80	3.41	164.07	160.67	92.78	8.37	2.37	3.54
Mean	130.14	115.38	22.42	16.98	23.65	2.99	163.67	138.34	83.07	8.16	2.35	3.50
SEm (±)	1.83	0.62	1.31	1.18	0.37	0.17	9.05	4.74	1.55	0.05	0.02	0.04
CD (P=0.05)	5.51	1.87	3.95	3.56	1.11	0.51	27.27	14.28	4.67	0.15	0.06	0.12
C ₂ (IET 8002 x Bas	mati 385	5)										
P ₁ (IET 8002)	111.50	127.75	14.13	10.63	21.75	2.97	133.07	121.25	88.06	8.04	2.73	2.95
P ₂ (Basmati 385)	118.13	130.00	22.69	19.53	25.32	1.53	89.75	64.70	76.83	9.32	2.02	4.63
$F_{1}(P_{1} \times P_{2})$	125.00	130.75	21.50	17.50	26.04	3.78	198.73	168.80	84.76	8.05	2.68	3.01
F ₂	120.06	124.75	22.56	17.72	25.34	2.56	155.25	105.30	89.38	8.75	2.32	3.78
$BC_1(F_1 \times P_1)$	116.10	125.25	19.67	13.97	23.61	3.41	143.20	131.07	92.19	7.99	2.68	2.98
$BC_{2}(F_{1} \times P_{2})$	130.75	124.25	17.25	16.19	24.63	2.32	120.54	95.10	80.95	8.68	2.42	3.58
Mean	120.26	127.13	19.63	15.92	24.45	2.76	140.09	114.37	85.36	8.47	2.47	3.49
SEm (±)	1.26	0.39	1.57	1.19	0.63	0.17	6.64	5.74	1.76	0.05	0.03	0.05
CD (P=0.05)	3.80	1.18	4.73	3.59	1.90	0.51	20.01	17.29	5.30	0.15	0.09	0.15
C ₃ (IET 8002 x Sam	bamahs	uri)										
P ₁ (IET 8002)	111.53	128.25	14.35	11.08	22.05	2.97	129.65	121.86	87.78	8.03	2.73	2.95
P ₂ (Sambamahsuri)	63.85	118.00	19.00	15.28	18.29	1.33	115.30	82.13	72.44	7.47	1.99	3.80
$F_{1}(P_{1} \times P_{2})$	116.25	117.75	23.50	19.53	23.69	3.10	161.25	146.92	87.56	7.98	2.65	3.01
F ₂	101.41	116.00	23.00	17.56	24.31	2.81	174.25	154.87	88.77	8.10	2.22	3.65
$\overrightarrow{BC}_{1}(\overrightarrow{F}_{1} \times \overrightarrow{P}_{1})$	114.44	114.00	16.47	13.16	22.75	3.29	159.05	156.83	89.14	8.19	2.67	3.07
$BC_{2}(F_{1} \times P_{2})$	110.63	115.00	18.19	15.35	22.66	2.61	138.15	117.40	89.90	8.13	2.42	3.36
Mean	103.02	116.67	19.09	15.33	22.29	2.68	146.28	130.00	85.93	7.98	2.45	3.31
SEm (±)	1.55	0.46	1.11	0.92	0.65	0.15	9.01	5.29	2.21	0.05	0.03	0.06
CD (P=0.05)	4.67	1.39	3.34	2.77	1.96	0.45	27.15	15.94	6.66	0.15	0.09	0.18

breadth and kernel L/B ratio in the cross C_3 therefore, it suggested the existence of epistasis in the inheritance of these characters (Table 2). These findings were further substantiated by the more robust "Joint Scaling Test" proposed by Cavalli (1952), in which the significant Chi-square values indicated the presence of epistasis and non significant Chi-square values indicated the absence of epistasis in the inheritance of the morphophysiological characters studied (Table 3). A perusal of six parameter model suggested by Jinks and Jones (1958) indicated that additive effect (d) was significant for all the characters except florets panicle⁻¹, grain length, cooked kernel breadth and cooked kernel L/B ratio in C₁, grain yield/plant in C₂ and cooked kernel length in C_3 , while dominance effect (h) was significant for all the characters except days to 50% flowering, panicle length, florets panicle⁻¹ and kernel length in the cross C_1 , total tillers plant⁻¹, productive tillers plant⁻¹, panicle length, florets panicle⁻¹, filled grains panicle⁻¹, floret fertility, 1000 seed weight, grain yield plant⁻¹, harvest index and cooked kernel L/B ratio in the cross C_2 and panicle length, panicle weight, florets panicle⁻¹, filled grains panicle⁻¹, floret fertility, grain weight panicle⁻¹, grain yield plant⁻¹, harvest index, kernel breadth, kernel L/B ratio and cooked kernel breadth in the cross C_3 . However, all the genetic components were significant for the traits plant height, total tillers/plant, productive tillers/plant, grain breadth, grain L/B ratio,

Table 2. Mean performance of different generations of three crosses for quality traits in rice

Treatment	Grain	1000 seed	Grain	Harvest	Kernel	Kernel	Kernel	Cooked	Cooked	Cooked	Linear
	weight	weight (g)	vield	Index	length	breadth	L/B	kernel	kernel	kernel	elongation
	panicle ⁻¹	1	plant(g) ⁻¹	(%)	(mm)	(mm)	ratio	length	breadth	L/B ratio	ratio
	(g)		prant(g)	(,0)	()	()	iuno	(mm)	(mm)	D D Tutto	iuno
C (IFT 6441 x D)	udheswar)						()	()		
P_{1} (IET 6441)	2.01	19.09	25 54	31 35	5 84	2 38	246	10.35	3.00	3 34	1 72
P_1 (IL1 0441) P_2 (Dudbeswar)	2.01	21.18	25.54 55.57	36.37	5.07	2.50	2.40	0 <i>1</i> 2	3.00	3.11	1.72
F_2 (Duditeswar) F_2 (P x P)	2.50	22.10	64 19	37.87	5.87	2.15	2.79	9.42	3.00	3.11	1.50
$F_{1}(r_{1} \times r_{2})$	2 10	17.09	32 44	30.45	5.62	1.72	3.28	9.42	2.00	3.14	1.62
$\mathbf{BC} (\mathbf{E} \mathbf{x} \mathbf{P})$	3 54	24.61	47.56	32 10	5.04	2 44	236	8.46	3 31	2.56	1.05
$\frac{\mathbf{BC}_{1}(\mathbf{\Gamma}_{1} \times \mathbf{\Gamma}_{1})}{\mathbf{BC}_{1}(\mathbf{F}_{1} \times \mathbf{P}_{1})}$	3 33	20.95	54 34	41 38	5.83	2.10	2.30	9.40	2.80	3 39	1.47
Mean	2.88	20.95	46 60	34.92	5.81	2.10	2.70	9.42	2.00	3.37	1.61
SFm (+)	0.10	0.45	4 30	0.77	0.02	0.03	0.04	0.21	0.09	0.11	0.03
CD(P=0.05)	0.10	1 36	12.96	2 32	0.02	0.09	0.04	0.63	0.027	0.33	0.09
$C_{\rm c}$ (IET 8002 x Ba	smati 38	5)	12.70	2.52	0.00	0.07	0.12	0.05	0.27	0.55	0.07
P_{2} (IET 8002)	2.79	25.40	28.03	32.64	5.81	2.40	2.37	9.59	3.00	3.16	1.52
P (Basmati 385)	1.37	20.32	22.51	28.35	6.64	1.89	3.52	11.59	2.70	4.29	1.74
F_2 (P x P)	3.99	23.71	60.92	43.86	5.97	2.25	2.66	9.11	3.20	2.86	1.53
F.	2.51	23.40	39.68	38.70	6.22	2.10	2.97	10.25	2.89	3.56	1.65
${\rm BC}_{\rm C}$ (F. x P.)	3.03	23.93	39.34	36.16	5.77	2.48	2.33	9.84	3.17	3.11	1.71
BC, $(F, x P)$	2.36	24.20	32.20	35.55	6.24	2.10	2.97	12.33	3.03	4.10	1.98
Mean	2.68	23.49	37.11	35.88	6.08	2.20	2.80	10.28	3.05	3.42	1.69
SEm (±)	0.10	0.75	2.62	1.04	0.02	0.03	0.04	0.24	0.08	0.14	0.04
CD (P=0.05)	0.30	2.26	7.89	3.13	0.06	0.09	0.12	0.72	0.24	0.42	0.12
C, (IET 8002 x Sat	mbamahs	uri)									
P (IET 8002)	2.73	25.35	26.78	32.14	5.86	2.41	2.44	9.65	2.97	3.22	1.64
P ₂ (Sambamahsuri)	0.97	12.45	17.53	27.61	5.10	1.77	2.88	10.25	2.69	3.82	2.01
$F_{1}^{2}(P_{1} \times P_{2})$	3.29	23.51	51.06	34.40	5.64	2.42	2.33	10.25	3.06	3.35	1.82
F,	3.20	21.53	45.39	39.66	5.61	2.27	2.47	11.00	3.06	3.60	1.96
$\tilde{BC}_{1}(F_{1} \times P_{1})$	3.46	23.40	36.07	33.86	5.73	2.45	2.34	10.04	3.21	3.13	1.75
$BC_{2}(F_{1} \times P_{2})$	2.95	25.43	42.41	46.23	5.60	2.10	2.67	8.13	2.88	2.82	1.45
Mean	2.76	21.95	36.54	35.58	5.59	2.24	2.52	9.89	2.98	3.32	1.77
SEm (±)	0.17	0.76	2.40	1.81	0.04	0.03	0.04	0.22	0.06	0.10	0.04
CD (P=0.05)	0.51	2.29	7.23	5.45	0.12	0.09	0.12	0.66	0.18	0.30	0.12

grain weight/panicle and kernel L/B ratio in the cross C_1 , for plant height, grain breadth, grain L/B ratio, kernel breadth, kernel L/B ratio, cooked kernel length and linear elongation ratio in the cross C_2 and for plant height, days to 50% flowering, cooked kernel L/B ratio and linear elongation ratio in the cross C_2 and for plant height, days to 50% flowering, cooked kernel L/B ratio and linear elongation ratio in the cross C_2 and for plant height, days to 50% flowering, cooked kernel L/B ratio and linear elongation ratio in the cross C_3 . When the complexity of the inheritance of quantitative characters become more, the contribution of dominance gene effects to their inheritance becomes greater (Gamble, 1962). Conversely, the contribution of additive gene effects was greater for the characters which apparently had less complex inheritance.

Among the components of epistasis, additive \times additive interaction was significant and important in

all the three crosses for plant height, total tillers/plant, grain breadth, grain L/B ratio, additive \times dominance interaction was found to be operative in all the three crosses for plant height, kernel L/B ratio, cooked kernel length and linear elongation ratio whereas, dominance × dominance interaction was significant in all the three crosses for plant height, grain breadth, grain L/B ratio, cooked kernel length and linear elongation ratio. These results are in close agreement with earlier findings of Khaleque et al. (1978) and Manna et al. (2002). The higher magnitude of estimates of dominance \times dominance interaction as compared to additive \times additive and additive × dominance interactions suggest the predominant role of dominance \times dominance interaction for grain yield, quality and their components which corroborated with the observations of Dikshit

Table 3. Scaling test and gene effects of grain yield and quality characters in three crosses of rice

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cross		Scal	le		Genetic component						Epistasis
Plantheight (m) C 7.18* 8.33** 4.2.8** 10.6*0 **** 10.5*** 11.3*** 11.		А	В	С	D	m	(d)	(h)	(i)	(j)	(l)	-
C1 -7.18** 8.3.3** 42.2.8** 20.5.7** 156.96* -26.37** -51.22* -41.13** -7.76** 39.98** D C1 15.08* 12.3** 10.11 46.9* 10.13** -3.1** 51.13** 13.44* -11.34* -7.76** 39.9** D C3 10.0 41.15** -2.25 -2.25** 10.13** 12.8** 12.8** 12.8** 12.8** 12.8** 12.8** 12.8** 12.8** 12.8** 12.8** 12.8** 10.0** 1.75* 4.50 4.00 -1.75 4.00 - C1 1.75 1.05 1.07* 1.28** 12.8** 1.13** 18.8** 1.06** 1.07** 1.08** 12.8** 1.13** 18.8** 1.06** 1.07** 1.07** 1.05*** 2.02*** D C1 1.06** 1.28*** 1.28*** 1.06** 1.05*** 2.03*** 1.07*** 2.03*** D 1.05**** 2.02**** D 1.05*****	Plant he	eight (cm)										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₁	-7.18**	8.33**	42.28**	20.57**	156.96*	-26.37**	-51.22*	-41.13**	-7.76**	39.98**	D
$ \begin{array}{c} C_2 & 4.31^* & 18.38^* & 0.63 & -6.72^* & 101.37^* & -3.31^* & 51.13^{**} & 13.44^* & -11.34^* & -27.51^* & D \\ (2.13) & (2.13) & (2.30) & (2.30) & (2.30) & (2.70) & (1.127) & (3.90) & (3.92) & (3.62) &$		(1.45)	(3.91)	(10.11)	(4.69)	* (9.55)	(1.77)	(19.86)	(9.39)	(1.96)	(10.63)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₂	-4.31*	18.38**	0.63	-6.72*	101.37*	-3.31**	51.13**	13.44*	-11.34**	-27.51*	D
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G	(2.17)	(5.08)	(4.28)	(3.20)	* (6.43)	(0.72)	(17.43)	(6.39)	(2.70)	(11.27)	Ð
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_3	1.10	41.15**	-2.25	-22.25**	43.19**	23.84**	159.80**	44.50**	-20.03**	-86.75**	D
Days to we may be also to we	Dava ta	(3.92) 50% flow	(2.40)	(9.63)	(5.05)	(10.12)	(0.58)	(22.25)	(10.10)	(2.13)	(12.64)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Days to	1 75	1 75	4.00	2.00	113.00*	1 75**	4 50	4.00	1 75	4.00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_1	(1.60)	(1.13)	(2.41)	(1.17)	*(2.44)	(0.67)	(5.93)	(2,35)	(0.95)	-4.00	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-8.00**	-12.25**	-20.25**	0.00	128.88**	-1.13**	-18.38**	0.00	2.13**	20.25**	D
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	02	(1.17)	(0.90)	(1.68)	(0.74)	(1.49)	(0.24)	(3.88)	(1.47)	(0.59)	(2.74)	2
· ·	C,	-9.00**	-5.75**	-8.75**	3.00**	124.63**	0.63*	-27.63**	-6.00**	-1.63*	20.75**	D
$ \begin{array}{llllllles per plant \\ C_1 & 2.63 & -20.51^{**} & 7.32 & 5.28^{**} & 32.48^{**} & -5.29^{**} & -33.49^{**} & -10.57^{**} & 11.57^{**} & 28.48^{**} & D \\ \hline (3.31) & (3.95) & (5.01) & (1.99) & (4.10) & (1.01) & (11.76) & (3.97) & (2.08) & (8.83) \\ \hline (3.86) & (3.96) & (0.44 & 8.21^{**} & 34.82^{**} & 4.28^{**} & -33.49^{**} & -52.69^{**} & 0.67^{**} & 12.69^{**} & D \\ \hline (3.86) & (3.96) & (7.19) & (4.00) & (8.07) & (1.06) & (10.52) & (7.99) & (1.10) & (9.21) \\ \hline (2.35) & (2.24) & (8.31) & (3.89) & (7.80) & (0.47) & (16.25) & (7.99) & (1.10) & (9.21) \\ \hline (3.45) & (3.47) & (3.44) & (4.22) & (2.29) & (4.62) & (0.55) & (12.93) & (4.58) & (2.08) & (9.16) \\ \hline (3.45) & (3.47) & (4.42) & (2.29) & (4.62) & (0.55) & (12.93) & (4.58) & (2.08) & (9.16) \\ \hline (3.45) & (3.47) & (4.42) & (2.29) & (4.62) & (0.55) & (12.93) & (6.18) & (1.92) & (9.21) \\ \hline (3.66) & (2.60) & (5.56) & (3.41) & (6.89) & (1.03) & (15.73) & (6.14) & (1.92) & (9.21) \\ \hline (3.66) & (2.60) & (5.66) & (3.41) & (6.89) & (1.03) & (15.73) & (6.14) & (1.92) & (9.21) \\ \hline (3.96) & (2.60) & (5.56) & (3.41) & (6.89) & (1.03) & (15.73) & (6.14) & (1.92) & (9.21) \\ \hline (1.99) & (1.13) & (1.73) & (1.11) & (2.23) & (0.20) & (5.59) & (2.22) & (0.77) & (3.46) \\ \hline (1.09) & (1.13) & (1.73) & (1.11) & (2.23) & (0.20) & (5.59) & (2.22) & (0.77) & (3.46) \\ \hline (1.99) & (1.13) & (1.73) & (1.11) & (2.23) & (0.20) & (5.59) & (2.22) & (0.77) & (3.46) \\ \hline (1.90) & (1.61) & (3.77) & (1.97) & (3.96) & (0.36) & (8.77) & (3.95) & (0.90) & (5.00) \\ \hline \text{Panicle lengitt} (g) \\ \hline C_1 & 0.57 & 0.57 & 0.51 & 0.37 & (1.97) & (3.96) & (0.36) & (8.77) & (3.49) & (0.32) & (1.32) \\ \hline (1.00) & (1.61) & (3.77) & (1.97) & (3.96) & (0.36) & (8.77) & (3.49) & (0.32) & (1.32) \\ \hline (1.00) & (1.61) & (3.77) & (1.97) & (3.96) & (0.36) & (8.77) & (3.49) & (3.57) & (0.41) & 1.87 \\ \hline C_1 & 0.57 & 0.57 & 0.54 & -1.197 & 13.487* & 0.95 & 20.26 & 23.94 & 9.32 & 35.63 & - \\ (1.00) & (1.63) & (0.34) & (0.94) & (0.79) & (0.72) & (1.65) & (0.78) & (0.155) & (1.75) & (1.79) & (3.46) & (1.55) & (75.79) & (1.29) & (5.99) & $	- 3	(1.06)	(1.03)	(2.00)	(1.00)	(2.03)	(0.32	(4.85)	(2.00)	(0.66)	(3.05)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Total ti	llers per p	lant	. ,	. ,			· /		. ,		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₁	2.63	-20.51**	-7.32	5.28**	32.48**	-5.29**	-33.49**	-10.57**	11.57**	28.45**	D
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(3.31)	(3.95)	(5.01)	(1.99)	(4.10)	(1.01)	(11.76)	(3.97)	(2.08)	(8.83)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₂	3.71	-9.69*	10.44	8.21*	34.82**	-4.28**	-35.71	-16.42*	6.70*	22.39	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(3.86)	(3.96)	(7.19)	(4.00)	(8.07)	(1.06)	(19.52)	(8.00)	(2.62)	(11.98)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₃	-4.91*	-6.13**	11.65	11.34**	39.36**	-2.33**	-49.58**	-22.69**	0.61	33.72**	D
Productive titlers per plant $C_1 = 0.64 = 19.06^{++} 2.74 = 7.84^{++} 32.15^{++} -5.64^{++} -44.59^{++} -15.69^{++} 9.85^{++} 34.11^{++} D$ $C_2 = 0.19 = 4.66 = 5.72 = 5.28 = 25.64^{++} -4.45^{++} -23.55 = 10.57 = 2.24 = 15.41 = -10.57 = 2.24 = 15.41 = -10.57 = 2.24 = 15.41 = -10.57 = 2.24 = 15.41 = -10.57 = 2.24 = 15.41 = -10.57 = 2.24 = 15.41 = -10.57 = 2.24 = 15.41 = -10.57 = 2.24 = 15.41 = -10.57 = 2.24 = 15.41 = -10.57 = 2.24 = 15.41 = -10.57 = 2.24 = 15.41 = -10.57 = 2.24 = 15.41 = -10.57 = 2.24 = 15.41 = -10.57 = 2.24 = 15.41 = -10.57 = 2.24 = 15.41 = -10.57 = 2.24 = 15.41 = -10.57 = 2.24 = 15.41 = -10.57 = 2.24 = 15.41 = -10.57 = 2.24 = 15.41 = -10.57 = -2.24 = 15.41 = -10.57 = -2.24 = 15.41 = -10.57 = -2.25 = -10.57 = 2.21 = 2.42 = 26.42^{++} -2.10^{++} -28.54^{+-} -13.25^{+-} -0.09 = 21.66^{++} D = -10.57 = 2.10^{++} -2.21 = 2.42 = 2.20^{++} -0.87^{++} 1.67 = 0.71 = 0.49 = 1.59 = -10.57 = -2.10^{++} 2.21 = 2.44 = 2.8.42^{++} -1.79^{++} -9.93 = 4.88 = 0.77 = 7.55 = -10.57 = 2.21^{++} 2.21 = 2.44 = 2.8.42^{++} -1.79^{++} -9.93 = 4.88 = 0.77 = 7.55 = -10.57 = 2.10^{++} 2.21 = 2.44 = 2.8.42^{++} -1.79^{++} -9.93 = 4.88 = 0.77 = 7.55 = -10.57 = 2.10^{++} 2.21 = 2.44 = 2.8.42^{++} -1.79^{++} -9.93 = 4.88 = 0.77 = 7.55 = -10.57 = 2.10^{++} 0.39^{+-}$	D 1	(2.35)	(2.24)	(8.31)	(3.89)	(7.80)	(0.47)	(16.25)	(7.79)	(1.10)	(9.21)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Product	tive tillers	per plant	0.74	7 0 4 * *	20.15**	E (1++	44 50**	15 (0**	0.05**	24 11 **	D
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_1	(2.45)	-19.00^{**}	-2.74	(2, 20)	52.15^{**}	-5.04***	-44.59^{**}	-15.09***	9.85***	54.11^{**}	D
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C	(3.43)	(3.47)	(4.42)	(2.29)	(4.02)	(0.33)	(12.93)	(4.38)	(2.08)	(9.10)	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_2	(3.06)	(2.60)	(6 56)	(3.41)	(6.89)	(1.03)	(15,73)	(6.81)	(1.92)	(9.21)	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-4.29	-4.12**	4.84	6.62*	26.42**	-2.10**	-28.54*	-13.25*	-0.09	21.66**	D
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	03	(2.95)	(1.28)	(5.72)	(3.07)	(6.16)	(0.47)	(13.93)	(6.14)	(1.51)	(8.11)	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Panicle	length (cm	ı)	()	()			()				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_1	-0.66	-1.64	-3.01	-0.36	22.20**	-0.87**	1.67	0.71	0.49	1.59	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	(1.09)	(1.13)	(1.73)	(1.11)	(2.23)	(0.20)	(5.59)	(2.22)	(0.77)	(3.46)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₂	-0.57	-2.10**	2.21	2.44	28.42**	-1.79**	-9.93	-4.88	0.77	7.55	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(1.75)	(0.79)	(3.07)	(1.58)	(3.18)	(0.40)	(7.29)	(3.15)	(0.87)	(4.36)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₃	-0.25	3.34*	9.53*	3.22	26.61**	1.88**	-6.27	-6.44	-1.79*	3.35	-
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	р · 1	(1.00)	(1.61)	(3.77)	(1.97)	(3.96)	(0.36	(8.77)	(3.95)	(0.90)	(5.00)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Panicle	weight (g)	0.42	2 02**	? ? 1**	1 71*	0.27*	10.02**	1 10**	0.27	5 01**	D
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_1	(0.97)	(0.43)	(0.57)	(0.35)	(0.71)	(0.13)	(1.92)	(0.70)	(0.27)	(1.32)	D
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C	0.06	-0.67*	-1.80	-0.60	1.05	0.72**	3 32*	1 20	0.32)	-0.59	D
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathcal{O}_2	(0.37)	(0.29)	(0.94)	(0.39)	(0.79)	(0.12)	(1.65)	(0.78)	(0.15)	(1.01)	D
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₂	0.51*	0.79*	0.74	-0.28	1.58	0.82**	3.38	0.57	-0.14	-1.87	-
Florets per panicle $C_{1} = -39.10^{*} - 20.47 = -83.50 = -11.97 = 134.87^{*} = 0.95 = 20.26 = 23.94 = -9.32 = 35.63 = -(17.92) = (27.91) = (50.94) = (27.08) = (54.57) = (6.66) = (126.77) = (54.16) = (15.53) = (75.79) = (10.01) = (19.29) = (42.60) = (22.85) = (45.76) = (2.34) = (101.96) = (45.70) = (10.26) = (58.39) = (10.01) = (19.29) = (42.60) = (22.85) = (45.76) = (2.34) = (101.96) = (45.70) = (10.26) = (58.39) = (23.72) = (23.72) = (25.75) = (25.98) = 7.18^{**} = -139.48 = -102.60 = 13.73 = 75.65 = (29.15) = (12.37) = (47.92) = (26.90) = (53.86) = (2.61) = (126.23) = (53.80) = (14.89) = (75.71)$ Filled grains per panicle $C_{1} = 13.06 = 31.83 = -20.62 = -32.76^{**} = 45.75 = -8.93^{**} = 233.98^{**} = 65.53^{**} = -9.38 = -110.43^{**} D = (8.95) = (16.51) = (22.81) = (11.69) = (23.45) = (1.85) = (58.43) = (23.38) = (7.95) = (38.44)$ $C_{2} = -27.92^{*} = -43.30^{*} = -102.35^{**} = -15.57 = 61.84^{**} = 28.28^{**} = 66.88 = 31.14 = 7.69 = 40.08 = -(11.91) = (18.47) = (17.26) = (9.47) = (19.15) = (2.81) = (56.27) = (18.95) = (9.53) = (40.32) = (11.91) = (18.47) = (17.26) = (9.47) = (19.15) = (2.81) = (56.27) = (18.95) = (9.53) = (40.32) = (13.53) = (15.31) = (20.78) = (12.06) = (24.19) = (2.00) = (63.05) = (24.11) = (9.20) = (41.51)$	3	(0.24)	(0.34)	(0.94)	(0.49)	(0.98)	(0.09)	(2.12)	(0.97)	(0.20)	(1.18)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Florets	per panicl	e									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₁	-39.10*	-20.47	-83.50	-11.97	134.87*	0.95	20.26	23.94	-9.32	35.63	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(17.92)	(27.91)	(50.94)	(27.08)	(54.57)	(6.66)	(126.77)	(54.16)	(15.53)	(75.79)	
$ \begin{array}{ccccccccccccccccccccccccccccccc$	C ₂	-45.40**	-47.41*	0.72	46.76*	204.93**	21.66**	-192.53	-93.53*	1.00	186.33**	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~	(10.01)	(19.29)	(42.60)	(22.85)	(45.76)	(2.34)	(101.96)	(45.70)	(10.26)	(58.39)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₃	27.20	-0.25	129.55**	51.30	225.08**	7.18**	-139.48	-102.60	13.73	75.65	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E.II 1	(29.15)	(12.37)	(47.92)	(26.90)	(53.86)	(2.61)	(126.23)	(53.80)	(14.89)	(75.71)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Filled g	rains per p	anicie 21.82	20 62	27 76**	15 75	0 02**	222 00**	65 50**	0.29	110 12**	D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_1	13.00	31.83 (16.51)	-20.02	-32.70^{**}	43.13 (23.15)	-0.93***	233.98*** (58.43)	(73 28)	-9.38 (7.95)	-110.43^{**}	U
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C	(0.23) -27 Q2*	-43 30*	-102 35**	(11.09) * -15 57	(23. 4 3) 61 84**	(1.05) 28 28**	66.88	(25.56)	7 69	40.08	_
$C_{3} = \begin{pmatrix} (1.5.7) & (1.7.26) & (1.7.7) & (1.7.12) & (1.7.12) & (1.5.7) & (1.6.7) & ($	c_2	(11.91)	(18.47)	(17.26)	(9.47)	(19.15)	(2.81)	(56.27)	(18.95)	(9.53)	(40.32)	
(13.53) (15.31) (20.78) (12.06) (24.19) (2.00) (63.05) (24.11) (9.20) (41.51)	C.	44.89**	5.76	121.65**	35.50**	172.99**	19.87**	-46.44	-71.01**	19.57*	20.36	-
	3	(13.53)	(15.31)	(20.78)	(12.06)	(24.19)	(2.00)	(63.05)	(24.11)	(9.20)	(41.51)	

Oryza Vo	I. 48.	No.1,	2011	(22-30)
----------	--------	-------	------	---------

Contd.	Table	3
--------	-------	---

Cross		Sca	le		Genetic component						Epistasis
	А	В	С	D	m	(d)	(h)	(i)	(j)	(1)	
Floret f	fertility (%)									
C ₁	21.55**	14.16**	-7.13	-21.42**	31.54**	-8.21**	135.81**	42.84**	3.70	-78.55**	D
	(3.87)	(2.18)	(9.78)	(4.93)	(9.90)	(0.79)	(21.44)	(9.87)	(1.97)	(12.14)	
C ₂	11.57**	0.31	23.12**	5.62*	93.69**	5.62**	-8.30	-11.25*	5.63	-0.63	-
	(3.94)	(5.18)	(5.67)	(2.80)	(5.84)	(1.71)	(16.47)	(5.59)	(2.99)	(11.32)	
C ₃	2.94	19.80**	19.74	-1.50	77.11**	7.67**	36.19	3.00	-8.43**	-25.74	-
	(4.36)	(3.09)	(14.26)	(7.08)	(14.26)	(1.60)	(29.99)	(14.17)	(2.50)	(16.19)	
Grain le	ength (mm)	0.5.0*	0.00*	7 50**	0.00	1.07*	0.57*	0.0 (***	0.50	D
C_1	-0.25*	0.26*	-0.56*	-0.29*	7.52**	-0.08	1.37*	0.57*	-0.26**	-0.58	D
C	(0.10)	(0.12)	(0.24)	(0.12)	(0.24)	(0.04)	(0.57)	(0.24)	(0.07)	(0.35)	D
C_2	-0.09	-0.02	1.50**	0.83^{**}	10.34**	-0.04^{**}	-4.07	-1.0/	-0.04	1.77	D
C	(0.07)	(0.13)	(0.24)	(0.12)	(0.23)	(0.04)	(0.38)	(0.23)	(0.08)	(0.55) 1 41**	D
C_3	(0.13)	(0.10)	(0.33)	(10.20)	(0.39)	(0.02)	(0.85)	(0.23)	(0.07)	(0.48)	D
Grain b	(0.15) readth (m	(0.10) m)	(0.30)	(10.20)	(0.57)	(0.02)	(0.05)	(0.57)	(0.07)	(0.40)	
C	0.62**	0.09*	-1.49**	-1.10**	0.19*	0.05**	5.01**	2.19**	0.26**	-2.89**	D
01	(0.04)	(0.03)	(0.10)	(0.04)	(0.09)	(0.01)	(0.19)	(0.08)	(0.02)	(0.12)	2
C.	-0.04	0.15**	-0.83**	-0.47**	1.43**	0.36**	2.30**	0.94**	-0.10**	-1.06**	D
2	(0.05)	(0.05)	(0.19)	(0.10)	(0.19)	(0.01)	(0.41)	(0.19)	(0.03)	(0.23)	
C ₃	-0.04	0.21	-1.12**	-0.65**	1.06**	0.37**	3.06**	1.30**	-0.12	-1.47**	D
5	(0.06)	(0.13)	(0.12)	(0.09)	(0.18)	(0.01)	(0.47)	(0.18)	(0.07)	(0.30)	
Grain L	/B ratio										
C ₁	-0.89**	-0.02	2.35**	1.63**	6.66**	-0.11**	-7.23**	-3.26**	-0.44**	4.18**	D
	(0.07)	(0.07)	(0.28)	(0.13)	(0.27)	(0.03)	(0.56)	(0.27)	(0.04)	(0.31)	
C_2	0.01	-0.47**	1.53**	1.00**	5.78**	-0.84**	-5.24**	-1.99**	0.24**	2.46**	D
~	(0.07)	(0.12)	(0.31)	(0.15)	(0.31)	(0.04)	(0.66)	(0.30)	(0.06)	(0.36)	-
C ₃	0.17	-0.08	1.82**	0.86**	5.10**	-0.43**	-3.72**	-1.73**	0.13	1.64**	D
с ·	(0.10)	(0.22)	(0.27)	(0.17)	(0.34)	(0.02)	(0.85)	(0.34)	(0.12)	(0.53)	
Grain v	veight per	panicle (g)	2 ((**	0 (7**	2 05**	0 27**	12 70**	E 22**	0.40*	7.01**	D
C_1	(0.26)	(0.33)	(0.27)	-2.07^{++}	-5.03^{++}	-0.27^{+++}	(1.16)	(0, 40)	(0.49°)	-7.01	D
C	(0.20)	-0.65**	(0.27)	(0.20)	(0.41)	(0.03)	(1.10) 1.00*	(0.40)	(0.19)	(0.78)	
C_2	(0.30)	(0.16)	(0.41)	(0.18)	(0.37)	(0.09)	(0.93)	(0.75)	(0.15)	(0.62)	-
С	0.94	1 64**	2 56**	-0.01	1 81*	0.86**	4 08	0.02	-0.35	-2.60	_
\mathbf{C}_3	(0.64)	(0.32)	(0.68)	(0.44)	(0.88)	(0.07)	(2.29)	(0.88)	(0.34)	(1.48)	
1000 se	ed weight	(g)	(0.00)	(011)	(0.00)	(0.07)	(>)	(0.00)	(0101)	(1110)	
C,	7.24**	-2.17*	-17.67**	-11.37**	-2.61	-1.04**	53.32**	22.75**	4.70**	-27.82**	D
1	(1.41)	(0.84)	(2.59)	(1.30)	(2.61)	(0.27)	(6.01)	(2.60)	(0.71)	(3.68)	
С,	-1.27	4.38	0.44	-1.34	20.18**	2.54**	9.32	2.68	-2.82	-5.79	-
-	(1.36)	(2.75)	(2.29)	(1.71)	(3.47)	(0.51)	(9.47)	(3.43)	(1.51)	(6.13)	
C ₃	-2.06	14.89**	1.31	-5.76**	7.38	6.45**	40.49**	11.53**	-8.47**	-24.36**	D
	(1.76)	(1.86)	(4.37)	(2.09)	(4.17)	(0.15)	(9.42)	(4.17)	(0.98)	(5.85)	
Grain y	ield per pl	ant (g)									
C_1	5.39	-11.07	-79.73**	-37.03**	-33.50	-15.02**	166.06**	74.05**	8.23	-68.38	D
a	(9.68)	(15.15)	(7.32)	(8.90)	(17.88)	(1.62)	(52.82)	(17.81)	(8.81)	(35.39)	Ð
C_2	-10.27	-19.03**	-13.66	7.82	40.90**	2.76	-24.90	-15.63	4.38	44.92*	D
C	(9.73)	(4.79)	(10.80)	(6.97)	(14.02)	(1.55)	(36.09)	(13.93)	(5.26)	(22.82)	
C_3	-3./1	10.23 ^{**}	33.13 [™] (15.61)	12.30	40./0** (16.50)	4.03** (0.44)	-9.19 (37.06)	-24.01 (16.50)	-10.9/** (3.70)	14.08	-
Harver	(0.55) t index (%	(0.00)	(15.01)	(0.23)	(10.30)	(0.44)	(37.00)	(10.30)	(3.19)	(21.09)	
C	-5 03**	/ 8 53**	-21 65**	-12 57**	8 71	-2 51**	57 80**	25 15**	-6 78**	-28 64**	D
\mathbf{C}_1	(1.90)	(2.92)	(5.11)	(2.88)	(5.78)	(0.48)	(13.62)	(5.76)	(1.66)	(8.16)	
С	-4.18	-1.11	6.09	5.69	41.86**	2.14**	-14.65	-11.37	-1.53	16.65	-
\sim_2	(3.65)	(3.94)	(4.81)	(3.13)	(6.30)	(0.65)	(16.76)	(6.27)	(2.53)	(10.92)	
C.	1.59	30.45**	30.48**	-0.78	28.12*	2.06**	39.87	1.56	-14.43**	-33.59*	D
3	(4.58)	(4.45)	(10.02)	(5.76)	(11.55)	(0.67)	(26.88)	(11.53)	(3.13)	(15.81)	

 C_1 = IET 6441×Dudheswar; C_2 = IET 8002×Basmati 385; C_3 =IET 8002×Sambamahsuri; D=Duplicate Epistasis; Values in parenthesis indicate respective standard error (SE ±)

	Contd.	Table	3
--	--------	-------	---

Cross		Scale	;		Genetic component						Epistasis
	A	В	С	D	m	(d)	(h)	(i)	(j)	(l)	
Kernel	length (mr	n)									
C ₁	-0.15**	-0.13*	-0.90**	-0.31**	5.29**	-0.07**	0.87	0.62**	-0.01	-0.34	-
1	(0.04)	(0.05)	(0.22)	(0.11)	(0.23)	(0.02)	(0.47)	(0.22)	(0.03)	(0.25)	
С,	-0.10	-0.13*	0.62**	0.43**	7.01**	-0.49**	-2.13**	-0.86**	0.02	1.09**	D
2	(0.08)	(0.06)	(0.10)	(0.05)	(0.10)	(0.01)	(0.27)	(0.10)	(0.04)	(0.19)	
C ₂	-0.03	0.46**	0.20	-0.12	5.25**	0.38**	1.05*	0.23	-0.25**	-0.66*	D
5	(0.08)	(0.07)	(0.23)	(0.12)	(0.24)	(0.02)	(0.52)	(0.24)	(0.05)	(0.30)	
Kernel	breadth (n	nm)									
C ₁	0.34**	-0.12	-1.99**	-1.11**	0.05	0.11**	4.55**	2.21**	0.23**	-2.43**	D
1	(0.06)	(0.07)	(0.11)	(0.04)	(0.08)	(0.03)	(0.21)	(0.08)	(0.04)	(0.15)	
С,	0.31**	0.07	-0.39	-0.38**	1.38**	0.26**	2.01**	0.77**	0.12**	-1.15**	D
2	(0.06)	(0.05)	(0.21)	(0.09)	(0.19)	(0.02)	(0.39)	(0.19)	(0.02)	(0.22)	
C ₃	0.07	0.01	0.08	0.00	2.09**	0.32**	0.41	0.00	0.03	-0.08	-
2	(0.08)	(0.03)	(0.17)	(0.09)	(0.17)	(0.02)	(0.39)	(0.17)	(0.04)	(0.22)	
Kernel	L/B ratio										
C ₁	-0.42**	0.09	2.51**	1.42**	5.47**	-0.16**	-5.96**	-2.85**	-0.25**	3.18**	D
	(0.08)	(0.09)	(0.13)	(0.05)	(0.11)	(0.03)	(0.29)	(0.11)	(0.05)	(0.21)	
C ₂	-0.37**	-0.24**	0.67*	0.64**	4.22**	-0.58**	-3.44**	-1.28**	-0.07*	1.88**	D
	(0.07)	(0.06)	(0.31)	(0.15)	(0.29)	(0.02)	(0.59)	(0.29)	(0.03)	(0.32)	
C ₃	-0.09	0.12	-0.09	-0.06	2.53**	-0.22**	-0.04	0.13	-0.10*	-0.16	-
	(0.07)	(0.07)	(0.15)	(0.08)	(0.15)	(0.03)	(0.35)	(0.15)	(0.05)	(0.20)	
Cooked	l kernel ler	ngth (mm)									
C ₁	-2.85**	0.00	-1.94*	0.46	10.79**	0.46**	-5.13*	-0.91	-1.42**	3.76**	D
	(0.37)	(0.56)	(0.83)	(0.42)	(0.86)	(0.15)	(2.11)	(0.84)	(0.31)	(1.34)	
C ₂	1.98*	3.97**	2.62*	-1.67**	6.75**	-1.50**	11.64**	3.34**	-0.99**	-9.29**	D
	(0.78)	(0.48)	(1.26)	(0.63)	(1.27)	(0.09)	(3.05)	(1.27)	(0.38)	(1.95)	
C ₃	0.19	-4.25**	3.61**	3.84**	17.62**	-0.30	-19.11**	-7.68**	2.22**	11.74**	D
	(0.45)	(0.51)	(1.16)	(0.52)	(1.05)	(0.18)	(2.33)	(1.03)	(0.27)	(1.43)	
Cooked	l kernel bro	eadth (mm)									
C ₁	0.61**	-0.44	-2.14**	-1.16**	0.71*	-0.02	4.78**	2.31**	0.53**	-2.48**	D
	(0.14)	(0.28)	(0.30)	(0.16)	(0.33)	(0.07)	(0.88)	(0.32)	(0.14)	(0.59)	
C ₂	-0.16	0.15	-0.85**	-0.42**	2.15**	0.30**	1.89*	0.85**	-0.15	-0.84	D
	(0.18)	(0.25)	(0.28)	(0.16)	(0.33)	(0.04)	(0.89)	(0.33)	(0.14)	(0.60)	
C ₃	0.39**	0.02	0.46*	0.03	2.89**	0.14**	0.53	-0.06	0.19*	-0.35	-
~ .	(0.14)	(0.12)	(0.21)	(0.11)	(0.22)	(0.05)	(0.55)	(0.21)	(0.09)	(0.35)	
Cookec	kernel L/	B ratio	0 00 divit	1 4 7 144	e 1 estado	0.11	< o o vivit	0 0 4 4 4 4	0.05.444	2 5 0 divit	D
C_1	-1.37**	0.53	2.09**	1.4′/**	6.16**	0.11	-6.80**	-2.94**	-0.95**	3.78**	D
a	(0.12)	(0.47)	(0.52)	(0.31)	(0.63)	(0.08)	(1.60)	(0.62)	(0.23)	(1.01)	
C_2	0.76*	1.06*	1.62**	-0.10	3.26**	-0.84**	1.61	0.20	-0.15	-2.01	-
a	(0.35)	(0.41)	(0.59)	(0.34)	(0.69)	(0.05)	(1.75)	(0.69)	(0.25)	(1.13)	D
C_3	-0.31	-1.52**	0.65	1.24**	6.00**	-0.30**	-6.97**	-2.49**	0.61**	4.32**	D
. .	(0.23)	(0.23)	(0.35)	(0.15)	(0.31)	(0.07)	(0.81)	(0.30)	(0.13)	(0.57)	
Linear	elongation	ratio	0.04	0.17	1.00**	0.07*	1.07*	0.22	0.00**	0.70**	D
\mathbf{C}_1	-0.40**	0.04	-0.04	0.17	1.98**	$0.0/^{*}$	-1.06*	-0.55	-0.22**	0.70**	ע
C	(0.07)	(U.11) 0.60**	(0.18)	(0.09)	(0.18) 0.86**	(0.03)	(0.4 <i>5)</i> 2.50**	(U.18) 0.77**	(0.00)	(U.20) 1.92**	D
C_2	$0.3/^{**}$	0.09**	0.29	-0.39**	U.80**	-0.11**	2.50**	$(0.7)^{**}$	-0.16**	-1.85**	ע
C	(0.12)	(0.07)	(0.20)	(0.10) 0.72**	(0.20) 2 27 **	(0.01)	(U.4/) 2 70**	(U.2U) 1 45**	(U.UD) 0.40**	(U.3U) 2 22**	D
C_3	0.05	-0.95**	0.30**	0.72^{**}	5.27°*	-0.18**	-3./8 ^{**}	-1.43 ^{**}	0.49**	2.33**	D
	(0.09)	(0.09)	(0.16)	(0.07)	(0.15)	(0.03)	(0.55)	(0.13)	(0.05)	(0.25)	

* Significant at 5% level; ** Significant at 1% level; $C_1 = IET 6441 \times Dudheswar$; $C_2 = IET 8002 \times Basmati 385$; $C_3 = IET 8002 \times Sambamahsuri$; D=Duplicate Epistasis; Values in parenthesis indicate respective standard error (SE ±)

Character	C ₁ (IET 6441 x Du	(dheswar)	C ₂ (IET 8002 x Ba	smati 385)	C ₃ (IET 8002 x Samb	amahsuri)
	Chi-square value	Epistasis	Chi-square value	Epistasis	Chi-square value	Epistasis
Plant height (cm)	53.22*	Present	18.07**	Present	306.96**	Present
Days to 50% flowering	6.29	Absent	205.14**	Present	87.67**	Present
Total tillers plant-1	36.86**	Present	11.43**	Present	14.79**	Present
Productive tillers plant-1	37.49**	Present	5.12	Absent	14.01**	Present
Panicle length (cm)	4.98	Absent	9.63*	Present	11.04*	Present
Panicle weight (g)	54.42**	Present	11.76**	Present	9.11*	Present
Florets panicle-1	8.54*	Present	24.73**	Present	8.31*	Present
Filled grains panicle-1	9.29*	Present	40.49**	Present	38.25**	Present
Floret fertility (%)	67.37**	Present	18.02**	Present	41.66**	Present
Grain length (mm)	20.89**	Present	51.24**	Present	64.09**	Present
Grain breadth (mm)	722.13**	Present	32.40**	Present	88.89**	Present
Grain L/B ratio	272.53**	Present	55.08**	Present	47.26**	Present
Grain weight panicle ⁻¹ (g)	305.78**	Present	28.41**	Present	32.86**	Present
1000 seed weight (g)	91.93**	Present	3.63	Absent	89.78**	Present
Grain yield plant ⁻¹ (g)	127.90**	Present	16.43**	Present	14.76**	Present
Harvest index (%)	33.70**	Present	4.00	Absent	54.52**	Present
Kernel length (mm)	31.10**	Present	89.77**	Present	41.78**	Present
Kernel breadth (mm)	938.56**	Present	48.28**	Present	0.85	Absent
Kernel L/B ratio	825.13**	Present	48.11**	Present	5.34	Absent
Cooked kernel length	64.18**	Present	72.76**	Present	124.06**	Present
Cooked kernel breadth (mm	n)158.06**	Present	11.54**	Present	11.24*	Present
Cooked kernel L/B ratio	212.94**	Present	12.96**	Present	83.58**	Present
Linear elongation ratio	40.14**	Present	115.05**	Present	237.33**	Present

Table 4. Chi-square test for means of different generations for grain yield and quality traits in rice

*, ** Significant at 5% and 1% levels of probability, respectively

and Mani (1988) and Chauhan et al. (1993), who reported the importance of all the three types of interactions in the inheritance of different traits. Considering the sign of dominance (h) and dominance \times dominance (1), the nature of epistasis was identified as duplicate in majority of the crosses for most of the yield and quality related traits except days to 50% flowering, panicle length, florets/panicle and kernel length in the cross C₁, total tillers/plant, productive tillers/ plant, panicle length, florets/panicle, filled grains/panicle, floret fertility, grain weight/panicle, 1000 seed weight, harvest index and cooked kernel L/B ratio in the cross C₂ and panicle length, panicle weight, florets/panicle, filled grains/panicle, floret fertility, grain weight/panicle, grain yield/plant, kernel breadth, kernel L/B ratio and cooked kernel breadth in the cross C_3 . Duplicate epistasis as observed in most of the crosses for majority of the characters may result in decreased variation in F_2 and subsequent generations and may decrease

heterosis and also hinder the pace of progress through selection (Singh *et al.*, 2006).

The present study demonstrates the importance of additive, dominance and epistatic gene effects in the inheritance of grain yield, quality and their attributing traits. Under this situation breeders may opt for one of the two alternatives. On one hand the crop can be conventionally handled as self fertilizing species practising selection in segregating generations, following diallel selective mating system as suggested by Jensen (1970). Another, perhaps more promising alternative is the exploitation of heterosis.

ACKNOWLEDGEMENT

The authors would like to thank Department of Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India, for funding the research programme.

REFERENCES

- Cavalli LL 1952. An analysis of linkage in quantitative inheritance. In "Quantitative inheritance" (ed. E.C.R. Reeve and C. H. Waddington) London, p. 135-144.
- Chauhan VS, Chauhan JS and Tandon JP 1993. Genetic analysis of grain number, grain weight and yield in rice (*O. sativa L*). Indian J Genet 53 (3): 261-263.
- Dikshit HK and Mani SC 1988. Genetic analysis of yield components and related agronomic characters in rice (*Oryza sativa L.*). SABRAO J 20 (2): 101-107.
- Gamble EE 1962. Gene effects in corn. III. Relative stability of gene effects in different environments. Can J Pl Sci 42: 628-634.
- Jensen NF 1970. A diallel selective mating system for cereal breeding. Crop Sci 10: 629-635.
- Jinks JL and Jones RM 1958. Estimation of components of heterosis. Genetics, 43: 223-234.
- Juliano BO and Duff B 1991. Rice grain quality as an emerging research priority in natural rice breeding programs. In: Rice grain marketing and quality issues, p. 55-64., IRRI, Manila, Philippine, p.55-64
- Juliano BO, Onate LU and Delmudo AM 1965. Relation of starch composition, protein content and gelatinization temperature to cooking and eating qualities of milled rice. Food Technol 19: 1006-1011.
- Khaleque MA, Joarder OI, Eunus AM and Islam AKMN 1978. Nature of gene interaction in the inheritance of yield and yield components in some rice crosses. Oryza 15: 157-172.

- Krishnaveni B, Shobha Rani N and Prasad ASR 2005. Heterosis and inbreeding depression for yield and yield components in rice. Oryza 42: 256-259.
- Little RR, Hilder GB and Dawson EH 1958. Differential effect of dilute alkali on 25 varieties of milled white rice. Cereal Chemistry 35: 111-126.
- Manna M, Sasmal BG and Das PK 2002. Gene action and heterosis for grain yield attributes and grain quality characters in rice (*O sativa L*.). Bangladesh J Genet Biotechnol 3 (1 & 2) : 1-3.
- Mather K 1949. Biometrical Genetics: The study of continuous variation. Methuen & Co., Ltk., London.
- Mishra B 2004. Exploring new opportunities. In: The Hindu Survey of Indian Agriculture 2004.
- Murthy PSN and Govindaswamy 1967. Inheritance of grain size and its correlation with the hulling and cooking qualities. Oryza 4: 12-21.
- Roy A and Panwar DVS 1993. Nature of gene interaction in the inheritance of quantitative characters in rice. Ann Agric Res 14 (3): 286-291.
- Sharma DK, Shrivastava MN and Shrivastava PS 1986. Nature of gene interaction in the inheritance of grain yield, harvest index and their component characters in rice. Indian J Agric Sci 56: 397-403.
- Singh I, Gill MS and Bains TS 2006. Generation mean analysis for yield attributing traits in mungbean [Vigna radiata (L.) Wilczek]. Indian J Genet 66 (1):47-48.
- Somrith B, Chang TT and Jackson BR 1979. Genetic analysis of traits related to grain characteristics and quality in two crosses of rice. IRRI Res Paper Ser 35, p.14.